
*-A16 246 ONd FINDING SHORTEST PATHS ON CONVEX POLYNEDRA(U) /

7 Ai 624 ERVAND UNIV COLLEGE PARK
CENTER FOR AUTOMATION

I RESEARCH D M MOUNT MAY 85 CAR-TR-128 RFOSR-TR-86-846
UNLSIIDF92-2--02FG1/ L

EmEons EEonh

10~

jfull IL-

MICROCOPY RESOLUTO S

NA4,NA P j ; A -,,N AI ~ A

'AFOSR.TR. 86-0046

CA Ih Z H -120 F -1 jt3) (:

C> Ih-I v May 1)8 '

ON FINDING; SHOR'I'EST PATH'LS ON (;Q\Vtf11x

David \j..\Niounjt

Dep-artrncrir or' Computer S-cienjce

T ni versi ty of N laryhrid ml
Collge :IJR-. M T) 207-12

COMPUTER SCIENCE
TECHNICAL REPR SERWS

.UE TE

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

S 20742

Nvpr~o
4..4Wr

i 0

CAR-TR-120 F-49820-83-C-0082
CS-TR-1495 May 1985

ON FINDING SHORTEST PATHS ON CONVEX

POLYHEDRA

David M. Mount

Department of Computer Science D T IC
University of Maryland
College Park, MD 20742 T

S D
*/

ABSTRACT

Applications In kobotlcs and autonomous navigation have motivated the
study of motion planning and obstacle avoidance algorithms. The special case
considered here Is that of moving a point (the object) along the surface of a con-
vex polyhedron (the obstacle) with n vertices. Sharlr and Schorr have developed

*, an algorithm that, given a source point on the surface of a convex- polyhedron,
* ,C 1determines the shortest path from the source to any point on the polyhedron in

linear time after O(n 3 log n) reprocessing time. The preprocessed output requires
O(n') space. !' "I 1-'t

By using known algorithms for fast planar point location, the shortest path
query time for Sharir and Schorr's algorithm is shown to be O(k + log n) where k
is the number faces traversed by the path. We give an improved preprocessing
algorithm that runs In O(n 2 log n) time requiring the same query time and space.
We also show how to store the output of the preprocessing algorithm In
O(n log n) space while maintaining the same query time.

DJBTRIB& DryIC c m? 00 rSUIC n x

DOt _ T ATEMfET A This t'f] - I.' g,

Approved for pubie release; , a' d.
Distributio Un3.it DistiibuVe

C1219f, Tohnisal infrva %e

The support of the Air Force Office of Scientific Research under Contract
F-49620-83-C-0082 is gratefully acknowledged.

w 1. Introduction

The study of motion planning in Euclidean 2-space and 3-space has arisen from

-. important applications in the area of robotics. In general, one is interested in whether a

set of objects subject to some possible restrictions in motion can be moved from one

- position in space to another. An important subproblem to consider is that of finding the

shortest' path from one point to another avoiding polygonal or polyhedral obstacles.

-.- Previous work on this problem includes an O(n 2log n) algorithm for finding the

Euclidean shortest path in 2-space around polygonal obstacles [LW79, SS841. In the 2-

dimensional case, shortest paths lie along straight line segments passing between the

source, the destination and the vertices of the polygons. Thus, the shortest path can be

constrained to pass through finitely many line segments. The graph formed by these

iine segments, can'6d the visibility graph, may contain as many as O(n 2) edges and can be

constructed in';:O(1.log n) time. The shortest path is found using standard graph algo-

rithms. In the'"Vase that the obstacles are parallel line segments in the plane [LPS1,

* SS841 or the path is constrained to lie within simple polygon tLP81] the problem can be

solved in O(n log n) time.

In Euclidean 3-space when objects consist of polyhedra this technique cannot be

employed. Unlike the 2-dimensional case in which shortest paths pass through the

finitely many vertices of the polygon, in 3-space shortest paths may pass anywhere along

the edges of the polyhedron. Sharir and Schorr present a doubly exponential algorithm

for determining the sequence of edges that are traversed along the shortest path using

symbolic calculations [SS841.

The visibility graph method can be exploited in 3-space to give a polynomial time

approximation [LW79. This technique consists of covering the edges of the polyhedra

-with closely placed points. Shortest paths, constrained to pass through these points, can

be determined by the visibility graph approach. However, in order to achieve k-digits of

precision, exponentially many points may be needed.

The special case in which the obstacle is a single convex polyhedron can be solved

in polynomial time. The shortest path between two points on the surface of a convex

polyhedron that does not pass through the interior of the polyhedro travels entirely

along the polyhedron's surface. Sharir and Schorr present an algorithm that determines

the shortest path from a fixed source to any point on the surface polyhedron in O(n)

time after O(n 3 log n) preprocessing time [SS84]. Here n is the number of vertices in the

polyhedron. The preprocessed output requires 0(n 2) space.

In this paper we continue to investigate the time and space complexity of this prob-

.: lem. Ve show that the query time can be reduced to 0(k~log n) time, where k is the

- .. .,-

2

number of faces traversed by the shortest path, by using standard techniques from com-

putational geometry. We demonstrate an improved shortest path preprocessing algo-

rithm that runs in O(n 2log n) time. Like Sharir and Schorr's algorithm, our algorithm

works by partitioning the faces of the polyhedron into polygonal regions according to the

discrete structure of shortest paths. Our essential improvement is the observation that

these regions arise as the Voronoi diagram of a particular set of points.

We also show how to decrease the space of the preprocessed output to O(n log n)

while maintaining the same query time. For query problems of this type, space is an

important resource since it is a factor throughout the lifetime of queries. Space reduc-

tion is also of interest, since an immediate impediment to more efficient algorithms (an

obvious target is O(n log n) since this is the complexity of Dijkstra's algorithm on planar

graphs). The technique for reducing storage involves the development of a method for

sweeping the surface of the polyhedron, which starts at the source and expands mono-

tonically with respect to distance from the source. This polyhedral sweep is somewhat

analogous to sweeping the latitude lines on a globe starting from one of the poles.

In Section 2 we summarize pertinent aspects of Sharir and Schorr's analysis of shor-

test paths on a convex polyhedron. In Section 3 we present our improved algorithm. In

Section 4 we develop a data structure representing the shortest path information requir-

ing O(n log n) space and show how queries are processed on this structure. Throughout,

calculations on real numbers are performed approximately using floating point opera-

tions.

2. The Structure of Shortest Paths

We begin by recalling the basic structure of shortest paths that affect the prepro-

cessing algorithm. We give many facts without proof and refer the reader to Sharir and ,

Schorr's analysis of the structure of shortest paths [SS84]. 7

Consider a convex polyhedron in 3-space with n vertices. By Euler's formula, the

number of edges and number of faces in -the polyhedron is O(n). The polyhedron is

assumed to be represented by a planar graph with additional geometric information

describing tlhe exact location of vertices and edges. This representation can be con-

structed from the simpler representation as the intersection of half-spaces in O(n log n)

3 time iPM831. Let s o denote the source point. Let f0, fl, f, denote the faces of the

4 polyhedron where f0 is the face containing so. For simplicity of presentation, we assume

that so lies on the interior of a face. This assumption may be met by making an

infinitesimal adjustment in the location of the source point. Each face is a closed convex

polygon. The sum or the angles formed by the edges incident on any vertex of a convex Ce C'cs

polyhedron is at most 2ir. The trivial vertices for which the sum equals 2, can be or

-L Zl

- ~ <,~ .. ~"...or

3

removed from the polyhedron, without altering the shape of the polyhedron or the shor-

test paths.

The points on each face are represented using a 2-dimensional coordinate system

associated with the face. A point lying on the polyhedron is represented by specifying

the face on which the point lies and the position of the point relative to the face's coor-

dinate system. Consider a pair of adjacent faces, f, and fj, sharing the common edge e.

There is a orthogonal transformation that maps the points of fj into the plane of f, by

unfolding the edge between the faces. This transformation, called the planar unfolding of

fj relative to fl, essentially changes coordinate systems from f, to ft.

There are three observations leading to the shortest path algorithm [SS841:

Observation 2.1

(1) Suppose that it is known that the shortest path from point so to point x on the sur-

face of the polyhedron passes through the interiors of the edges e1 , e 2 ... em. Then

the actual shortest path can be determined by unfolding the sequence faces incident

on these edges. The shortest path after unfolding is the straight line joining the

points (see Fig. 2.1).

A-

Fig. 2.1 Unfolding to Determine Shortest Path

(2) Two shortest paths, emanating from a common source do not cross.

(3) A shortest path cannot pass through a vertex of the polyhedron.

The third observation follows by recalling that the sum of the angles formed

between the edges incident on any nontrivial vertex of a convex polyhedron is strictly

less than 27r. This means that the faces incident on a vertex cannot be unfolded onto

the plane without splitting one of the faces. There are two perspectives through which

this splitting can be viewed. The first perspective arises by looking along the shortest

path from the source toward the vertex. Planar unfolding proceeds both in a clockwise

and counterclockwise direction around the vertex until the face opposite this path is split

in two parts. This splitting leads to the peels of Sharir and Schorr's algorithm. By

i'.. %- % M

4

splitting the polyhedron into its peels, the polyhedron can be unfolded onto the plane so
that shortest paths are just straight lines from the source (see Fig. 2.2). In Section 4, we

will return to study this structure.
so

S J!,J'

I

Fig. 2.2 Splitting a Face into Peels

The second perspective arises by considering a point on the face that was split by

the above operation. Looking back from the point toward the source, the path from the

*source to the vertex is split when unfolded around the vertex. In other words, there are

two images of the source point relative to the face. The perpendicular bisector between

these points passes through the vertex, and partitions the face into two regions. The

region in which a point lies determines to which side of the vertex the shortest path lies.

These regions are the same as the peels described earlier (See Fig. 2.3).

S.4

:* so

Fig. 2.3 Splitting the Source into Images

We can define an equivalence relation on the points of the polyhedron. equating

two points if the shortest paths to the .points traverse the same sequence of faces. An

equivalence class of this relation forms a region on a face of the polyhedron called a slice.

(Our usage of the term slice differs from Sharir and Schorr's. Our slice corresponds to

the intersection of their peel with a face.) Of course, the edges of the polyhedron define

part of the boundary between slices. The other points forming slice boundaries are

called the ridge points. For example, the bisector of Fig 2.3 consists of ridge points.

Ridge points are characterized by the fact that there are at least two shortest paths to

each ridge point (See Fig. 2.4).

4

,: " . ..,* . *".. . . ' ." .- .~ ".v -,. -' - .,- .. -, -.. , ,

s5

Fig. 2.4 Slices and Ridges

, .A shortest path traverses a given face at most once, thus the length of the sequence of

faces giving rise to a slice is bounded by the number of faces, and hence the number of

slices is finite. In fact, quite a bit more can be said about the slices:

Lemma 2.1 (Sharir and Schorr [SS84])

(1) The set of ridge points is the union of finitely many line segments called ridges.

(2) The ridges form a continuous tree on the polyhedron whose leaves are the vertices
Jof the polyhedron and whose vertices of degree 2 are the intersection of ridges and

polyhedron edges.

(3) Each slice is a convex polygon.

(4) Shortest paths do not pass through ridges.

We also add an observation, which follows from the unfolding rule for geodesics.

Lemma 2.1b Consider a vertex of the tree defined in Lemma 2.1 (2) of degree 2.

The pair of ridges incident on this vertex unfold to a straight line.

It follows from Lemma 2.1 (2) that the number of slices on a given face is bounded

above by the number of vertices on the polyhedron. Hence. there are O(n2) slices over

e.- **the entire polyhedron. The output of the preprocessing phase consists of the set of slices

represented by the line segments forming their boundaries. It follows from planarity and

Euler's formula that there are of O(n 2) ridges.

Since there are infinitely many points in a slice, the distance from the source cannot

be represented explicitly for each point. However. there is a simple finite representation.

For all the points in a slice, the planar unfolding of the shortest paths are straight lines

converging at a single point, the unfolded image of the source. A slice is associated with

this unfolded source image, expressed in the coordinate system of the face on which the

:- . --

6

slice lies. Once we know which slice a point lies in, the shortest path can be easily deter-

mined by drawing a straight line to the unfolded source and folding this line over the

polyhedron. Hence, the shortest path problem is reduced to the problem of point loca-

tion. Using standard algorithms for point location [Ki83, LT77, CoS3, Pr81] and observ-

ing that there are O(n 2) slices we have:

Observation 2.2 After determining the slices, queries may by answered in

O(k + log n) time (where k is the number of faces traversed by the shortest path) from a

data structure of size O(n 2). Certain queries of constant output length, such as deter-

mining the length of the shortest path or determining the initial direction of the shortest

path can be answered in O(log n) time.

Both Sharir and Schorr's preprocessing algorithm as well as ours proceed much like

Dijkstra's algorithm for single source shortest paths in graphs. The computation sweeps

outwards radially from the source point to increasing distances. A priority queue is

S'.' Y maintained holding distances to the upcoming significant events. To picture the algo-

rithm. imagine a fluid dispersing at a fixed rate of speed from the source. A function

representing the distance of the shortest path to each point is maintained. As the fluid

passes from one face to another, this function is updated. This update operation basi-

cally consists of unfolding the shortest path information across the edge to the next face.

3. Shortest Path Function

Sharir and Schorr's algorithm operates essentially by explicitly constructing the

ridges. Our approach is to represent the shortest path function (relative to a single face)

,S simply by a set of points, and show that the Voronoi diagram [SH751 of these points

4 5 define the ridges. Each point is the image of the source after unfolding the faces along a

shortest path (see Fig. 3.1).

.

7
i p

p

a I

a N /

• J' ,-J I./

- $c-"

Fig. 3.1 Slices Defined by Voronoi Diagram

We have defined the planar unfolding of a path on the polyhedron. Since the

unfolded paths that we deal with are line segments, we say that a point p is the planar

unfolding of the shortest path from a point x on the polyhedron if the segment px is the

planar unfolding of the shortest path to x. We define a set of points parameterized by

face and distance.

Definition - Src1(d) and Trav(p):

For a face fl, Srcl(d) consists of the set of points p (given in the coordinate system for fl)

that are the planar unfolding of a shortest path of length at most d from the source to

some point on f, (other than a vertex). For p E Src1(d), Trav(p) denotes the sequence of

faces traversed by the planar unfolding giving p.

Each slice containing a point at distance at most d from the source, contributes a

single point to Src,(d). If d < d then Src1 (a) C Src,(d). For sufficiently large d, Src1(d)

contains one point for each slice on fl. Since there are at most n slices on a given face,

Src1(d) contains at most n points. Since the position of a point p E Src1(d) is determined

uniquely by Trav(p), it can be shown that no two points of Src1 (d) have the same posi-

tion, relative to f,.

The exclusion of the vertices of face as destinations for points in Src1 (d) does not

significantly affect the slices that are generated, since shortest paths do not pass through

vertices, and a slice that intersects a face only at a vertex may easily be ignored. The

elimination of the vertices simplifies the explanation of the algorithm by removing some

special cases that would otherwise have to be considered.

Next we show that Srci(d) contains enough information to infer the !slice boun-
. daries. Let xy denote the Euclidean length of the segment xy.

Definition - Vort(p.d):

For p E Src1(d), let Vorl(p,d) denote the set of points in f, that:

(1) lie within distance d of p and

(2) are closer to p than to any other point in Srcl(d).

Vorl(p,d) is the intersection of the face fi, the Voronoi polygon for p relative to Srcl(d),

and the circle of radius d about p. We consider Vorl(p,d) to include its boundary.

Define Vor1 (p) to be the same as Vorl(p,d) without the distance bound.

It is not clear, that just because a line segment can be drawn from a point on a face

to an unfolded image of the source, that a path of this length exists along the

polyhedron. However, the next lemma says that we cannot underestimate the length of

the shortest path by doing so. This lemma depends crucially on the convexity of the

polyhedron and the fact that shortest paths unfold to straight lines. This observation is

fundamental to our improvement of Sharir and Schorr's algorithm.

Lemma 3.1 Let x be a point on a face f, and let p E Srcl(d) such that ipx I - d.

then the shortest path from the source to x has length no greater than d.

Proof

Since p E Srcl(d), there is a point y on f, such that p is the planar unfolding of the

shortest path to y. Let q be the planar unfolding of the shortest path to x. It suffices to
show that Iqx _ j px . If q = p then we are done. Otherwise, consider the seg-

ment xy, which lies entirely on f, by convexity. Let z1 , z2, ...,. z denote the intersection

of xy with the ridges as encountered from x to y (left to right as shown in Fig. 3.2). Let

z0 = x. Let qj be the planar unfolding of the shortest path to the points on the segment

(zj, Zj± 1) (so q0 = q and qm- p). Because there are finitely many slices there are

finitely many points zj. 92 : * ° '

4'..

-
*%'"" 4 .4 -..- ..

-'-F Fi g. 3.2

. .:Because the distance function on the surface of the polyhedron is continuous and is

-'.'.equal to the Euclidean distance to the unfolded source image, the distance

, 1-- ,-
o

'Z.

9

qjlzj qzj Therefore, the bisector between qj- and qj passes through zj. This

means that the set of points on xy to the left of zj are closer to qj=1 than to qj, and in

particular Iqj_,x qjx By induction we have

iqx! = LqoxI _ iqmxl Ipx!.

Lemma 3.2 Consider a point x on f, and p E Src1(d). Then x E Vorl(p,d) if and only

if the length of the shortest path from the source to x is at most d and p is the planar

unfolding of the shortest path to x.

Proof

Suppose that p is the planar unfolding of the shortest path to x of length a < d.

Clearly, I px = d. If x EVor(p,d) then there must be a point q E Src1 (d) such that

* qx < a implying by Lemma 3.1 that the shortest path to x is less than d, a contrad-

iction.

Suppose that x E Vor(p,d). (We assume that x lies in the interior of Vor1 (p,d).

The general result follows by continuity of the distance function.) Let d - px

Clearly, d < d. By Lemma 3.1, the shortest path to x is of length no greater than c. If

p is not the planar unfolding of the shortest path to x then there is a point q E Src1(d)

such that I qx d implying that x e Vor(p,d), a contradiction.

Our goal is to compute Src1 (d), where d is as large as the longest shortest path on

the polyhedron. Our algorithm constructs a set Src* for each face f, and we show Src*

is equal to Src1(d). For each point p E Src* we also construct Trav*(p), which we show

to be equal to Trav(p). For p E Src* and an edge e on fl, let Vor*(pe) denote the Voro-

noi polygon of p with respect to the points in Src*, restricted to the interior of e with no

distance restriction. As mentioned earlier, the computation is controlled by a priority

queue containing pending significant events. Each event is associated with a distance,

and events are extracted from the queue in increasing distance.

\Ve briefly describe the computation of Src* without giving implementation details

and prove the algorithm's correctness. Consider a point 1 E Srcj(d) for some d. Let e be

an edge on fj and let f, be the other face incident on e. If there is a point x on the inte-

rior of e such that x E Vorj(j,d), then the point p, defined to be the planar unfolding of

0 across e. is in Src1 (d). The smallest d for which p E Src1(d) is the closest point to 5 in

the intersection of Vorj(pd) and the interior of e. (If the closest point is a vertex of e.

UV

10

then we take x to be this vertex, but we add the additional constraint that the intersec-

tion of Vori(b,d) and the interior of e is nonempty.) This event is called the extension of

0 to p.

V.

-I-

Fig. 3.3 Extension of 1 to p

Each entry in the priority queue corresponds to such an event. An event is

described by the tuple, <d,x,5,j,i> meaning that 1 E Srcj*, x is the closest point to f) in

Vori*(bp,e) where e is the edge between f, and fj and Ix = d. (Since Vor*(b.e) may be

open, we take x to be the limit point closest to p subject to the constraint given above

that Vor,*(D,e) is nonempty.)

Algorithm 3.1

Src0" := {Sol;

T.rav*(so) := <fo>;

for i 1 to m do Src "* {}
for each edge e incident on f0 do

enqueue the event associated with the closest point on e to so;

while priority queue is nonempty do

extract event <d,x,o,j,i> from queue for which d is smallest:

.-2 {let e denote the edge between f, and fj}

p := planar unfolding of C) across e:

SrcI := SrcI * {p};

Trav*(p) := Trav*(!p) concatenated with <fl>;

for each edge of f, other than e do

if Vor,*([.e) is nonempty then

enqueue the event associated with the closest point

to p in Vor, (p5.e):

update Vor,*(cf.e) and priority queue entries affected

," ." - - 4" " ~~~~~~.. .. .r'...... "
•
. . . .,.-.....-.. -.... .. _.......4.. ..

n 11

by Vorl*(5,e);

end

end

To establish the correctness of the algorithm, we prove the following invariant:

Lemma 3.3 Inv(d 2): Let d2 be the distance to the next event in the priority queue,

and let d, be the distance of the most recently processed event from the priority queue.

For d such that d1 <5 d < d2, P E Srcl(d) if and only if P E Src* and

Trav(p) = Trav*(p).

Proof

Suppose that p E Srcl(d), where d, ! d < d2 . Let x be the nearest point to p on f,

(other than a vertex) for which p is the planar unfolding of the shortest path. Let

= I pxI. Clearly, x lies on the interior of an edge e between f, and an adjacent face

fj, implying that x lies on both f, and fi. Let 1 be the planar unfolding of the shortest

path to 'Z. Clearly, p is the planar unfolding of D across e, and j-px I I px I

-Pig

Fig. 3.4 --

If d < d, then p is already a member of Src* by Inv(d,). If d , d then since x

lies on the interior of e, there is a point R on the interior of fj lying on the segment 5x

such that]-px I < d, By Inv(d,), 1 E Srcj*. If x EVorj*(-p.e) then there exists a point

q E Srcj* such that I qx I < I-px 1 d,. By Inv(d,), q E Srcj(dl) implying that P is

not the planar unfolding of the shortest path to x, a contradiction. Therefore, Vor,*(-p,e)

is nonempty (since it contains x) and thus 1 has been extended to p in Src,*.

Finally, suppose that d, < a < d2. If x EVorj*(-pe) then, as above, it follows that

.5 is not the planar unfolding of the shortest path to x. If x e Vor t*(De) then there is an

event in the priority queue at distance d. contradicting the assumption that the next

event is at distance d-.

12

Conversely, suppose that p E Src1*. Let d be the distance of the event at which p

was added. Clearly, d < d, since events are processed from the priority queue in

ascending distance. If d < d, then p E Srcl(d) by Inv(d,). If d = d, then p was added

to Src,° by the extension of some point 0 E Srcj*. Hence, p is the planar unfolding of P

across e. There is a point x E Vorj*(,e) such that I-px I = d,. The point x is also a

point of fl. If, p is not the planar unfolding of the shortest path to x, then there is a

point q E Srci(d 1) such that Iqx I < I px I = d1 and x E Vorl*(q,e). By Inv(d,),

q E Src1
° implying that there is a point 4 E Srcj* that is the planar unfolding of q. But

I-qx I < I-px I implying that x eVorj*(p,e), a contradiction.

That Trav(p) = Trav*(p) is an simple consequence of all of this.

Finally, we describe the implementation of the algorithm and analyze its complex-

ity. As mentioned earlier, the number of slices on a face is bounded by n and hence

there are O(n 2) slices overall. Since the points of Src,* are in 1-1 correspondence with the

slices, there are O(n 2) extractions from the priority queue, which can be processed in

O(n2 log n) time. We show that the remaining operations can also be performed within

this bound.

For an edge e, lying between f, and fj, two separate structures are maintained, one

for each face. The structure for e in f, contains the points of Src* for which Vorl°(p,e) is

nonempty. By convexity of .Voronoi polygons, each intersection is an interval along e,

and these intervals are ordered from one end of e to the other by storing them in a bal-

ance tree. For each point p, the closest point to p in Vorl*(p,e) is also recorded.

Since there are at most n slices on each face it suffices to show that the system of

intervals on one edge e can be maintained through n insertions in total O(n log n) time.

Since there are 0(n) edges on the polyhedron, this will give an O(n 2log n) algorithm. We

• ." -outline this straightforward procedure.

Suppose that a new point p is added to Src1*. The algorithm determines the pair of

points, q, and q2 , already in Src1* whose orthogonal projection onto the infinite extension

of e lies just to the left and right of the orthogonal projection of p onto e. Note that the

nonempty Voronoi intervals on e are ordered along e exactly as are the orthogonal pro-

jections of the points defining these intervals. Hence, if the Voronoi interval for p is

nonempty, it lies between the intervals for q, and q2 . This operation can be done in

O(log n) time by bisection.

The algorithm works outward to both the left and right of the point lying between

these two Voronoi intervals. For each interval encountered (let q denote the source

4

13

image for this interval), determine whether some or all of the interval is closer to p than

to q, and if so either trim the interval or delete it altogether. If we are to the left of p,

the interval is trimmed along its right side, and vice versa. If an interval is deleted, con-

tinue the process on the next interval in order. The correctness of this operation is easy

to show. The time required is 0(1) for each interval, and hence is proportional to the

number of points deleted. But overall, the total number of points deleted from each

edge is no more than the number of points added, namely n. Note that whenever a new

point is added, there may be many intervals deleted but only two intervals, one on the

left and one on the right are trimmed. Over the entire algorithm there are O(n) inter-

vals trimmed on each edge. Seteed

0 0

' , *

Fig. 3.5 Trimming Voronoi Intervals

If Vor1 (q,e) is deleted by this procedure, then we need to delete the corresponding

entry in the priority queue. If this interval is trimmed, then the point closest to q may

change. If this is the case, we delete the existin; entry from the priority queue for

Vor1*(q,e) and insert a new one. These updates can be done in O(log n) time. The final

step of the preprocessing algorithm, after the sets Src* have been constructed, is to com-

pute the Voronoi diagram for Srcl*. The segments of the Voronoi diagram are the

s ridges. This requires O(n log n) time per face, and hence O(n 2log n) over the entire

polyhedron [SH751.

As for space requirements, recall that there are 0(n 2) ridges over the polyhedron.

Trav*(p) can be stored in 0(1) space for each p by observing that if p was added to Srcj*

by the extension of the point 5 then Trav*(p) is equal to Trav*(-p) concatenated with

<fl>. Hence, to recover Trav*(p) it suffices to store f, and a pointer to Trav(p).

Overall we require O(n 2) space to store the preprocessed output.

At this point, the output of our algorithm is the same as the output from Shari.

and Schorr's algorithm, thus we have:

A PC~~i X 'i 4 A 'I .- r-..dgtj

14

Theorem 3.4 Given a convex polyhedron with n vertices and a source point on the

polyhedron, the shortest path from the source to a query point on the surface of the

polyhedron can be determined in O(k + log n) time after O(n 2log n) preprocessing from

a structure requiring O(n 2) storage. Here, k is the number of faces traversed by the

shortest path.

"* 4. Storing Shortest Path Information

The object of this section is to show that the O(n 2) slices can be represented

efficiently in O(n log n) space so that shortest path queries can still be processed in

0(log n) time. This data structure can be built in O(n2log n) time assuming that the

preprocessing of the previous section has been completed.

We apply two principle ideas in reducing the storage. The first idea is standard in

computational geometry, that of storing O(n) different but similar lists, each of size O(n)

in less than O(n 2) space [DMS0, Co83]. The second idea is particular to the processing of

convex polyhedra. A typical technique for linearizing the processing of a polyhedron is

to decompose the polyhedron with respect to some fixed direction [DM80, Co83]. The

reason that this approach in inappropriate in our case is that shortest paths on polyhe-

dra are not necessarily monotone with respect to any fixed direction. We show how to

generalize the plane sweep technique to a type of radial sweep on a convex polyhedron.

The algorithm described here starts with the O(n 2) representation of the shortest

path structure produced by the preprocessing algorithm of Section 3 and reduces it to

O(n log n) representation. Recall that the output of the preprocessing is a partition of

each face into a set of at most n convex regions called slices bounded by ridges. The

slices arise as the Voronoi polygons of a set of unfolded source image points. Processing

a query is reduced to the problem of determining the region in which the query point

lies. To simplify query processing we begin by further decomposing the polyhedron by

triangulating face. In addition, whenever a ridge point of degree 3 or higher (a Voronoi

vertex) does not fall on an edge or vertex of the polyhedron, we add three edges joining

this point to the vertices of the enclosing triangle. The ridges partition each new tri-

angular face into at most n regions. Adjacent regions are separated by a single straight

line (see Fig. 4.1).

'.

15

I -

rI /

I. j

If' , .,,

Fig. 4.1 Triangulation of Faces

Recall from Lemma 2.1 that the ridges form a tree on the surface of the polyhedron with

n leaves. Thus there are at most n-2 ridge points of degree 3 or higher. The number of

vertices in this triangulated polyhedron is still O(n). Since the graph of the polyhedron

is planar, the number of edges and faces is also linear in n.

During this triangulation we may have have introduced trivial vertices for which

the sum of angles about the vertex is 27r. The importance of this restriction is that shor-

test paths do not pass through nontrivial vertices. Note that shortest paths still do not

pass through vertices because any trivial vertices created are on ridge points, and shor-

test paths do not pass through ridge points.

We now consider the global structure of shortest paths on the polyhedron. Each

point x on the polyhedron can be associated with two parameters: Ang(x) is the angle

that the shortest path makes with the source (with respect to the coordinate system of

the face containing the source), and Dist(x) is the distance of the shortest path to x.

Each point on the polyhedron is mapped to the polar plane at the coordinates (Ang(x),

Dist(x)) (see Fig. 4.2). Ridge points are mapped to two or more points. This planar lay-

out mapping is 1-1 since the location of the point can be recovered from these values by

folding the corresponding path back onto the polyhedron. The image of the polyhedron

under this map is a closed continuous region of the polar plane containing the origin.

Sharir and Schorr observe that this region is a star-shaped polygon. Since shortest paths

do not cross ridges or vertices, the boundary of this polygon consists of the ridges and

vertices. The planar layout can be physically interpreted as cutting the polyhedron

along the ridges and unfolding the resulting object onto the plane.

o%
4e..

~16

A o

- - - 1 7

* 'A

Fig. 4.2 Planar Layout of a Polyhedron

Lemma 4.1

(1) The shortest path from the source to a point x is mapped to a ray of length Dist(x)

at angle Ang(x).

(2) Each ray emanating from the origin intersects the image of an edge in at most one

point.

Proof

(1) is obvious from the observations made in section 2. (2) follows from the fact

that the initial segment of a ray terminating on the boundary of the polygon is the
image of a shortest path. Shortest paths cannot cross an edge more than once, and they

cannot travel along an edge without passing through a vertex, which we have shown

cannot happen.

0

Since the same edges are unfolded to reach the points within a given slice, the

planar layout maps each slice orthogonally into the plane by simply unfolding these

edges with respect to the source. The output of the preprocessing can be easily aug-

mented to include the orthogonal transformation mapping the point x of a slice to

Ang(x) and Dist(x). This map can be represented as a 3 by 3 homogeneous transforma-

tion. The planar layout of an edge is split at the point that a ridge point intersects the

edge. In case a ridge -gment lies along the edge, we may arbitrarily consider the ridge

segment to lie slightly to one side or the other of the edge for simplicity. In this way, an

edge is split into finitely many segments by the planar layout mapping. Since each face

may contain at most n slices, each edge may be split into at most n segments, called its

layout segments.

17

As a point x travels from one end of the edge to the other the value of Ang(x)

varies continuously and monotonically within a layout segment and may vary discon-

tinuously at a ridge point. It is tempting to think that Ang(x) changes monotonically

clockwise or counterclockwise as x travels from one end of an edge to another, but this is

generally not the case. The reason is that for a given edge, the shortest paths may cross

the edge from either side.

Consider an edge e to be arbitrarily oriented having a head and tail. The left and

right sides of e are defined with respect to an observer standing on e facing its head.

For each of e's layout segments (given e's orientation), consider the directed line contain-

ing the image of this segment under the planar layout map. Lemma 4.1 implies that this

line does not pass through the origin. Let Il , I.... 1 be the segments of e for which the

origin lies to the left of this line, and let rl, r 2, ... r k be the segments for which the origin

lies to the right. Equivalently, 1, (resp. r1) can be defined to be the points on the edge for

which shortest paths cross from the left (resp. right). These sequences are ordered from

the tail of e to its head. (See Fig. 4.3. Shortest paths are shown as dashed lines.)

~\

* ru

Fig. 4.3 Layout of an Edge Q3

Since no ray intersects an edge at more than one point, we can talk about the

cyclic ordering of the points on the edge induced by the planar layout.

Lemma 4.2 Given the directed partition of layout segments defined above, as 0

advances cyclically counterclockwise:

(1) the segments of the edge e are intersected by the ray at angle 0 in the order 11, 12,

.. .I, rk, ric_1 , ... , r,.

(2) the points of the segment If (resp. rj) are intersected by the ray at angle 0 in order

from tail to head (resp. head to tail).

Proof

The lemma follows by simple topological arguments after noting that the planar

'.- layout maps shortest paths continuously to the plane and hence preserves the properties

that shortest paths do not cross each other and they do not cross an edge more than

If* I

18

once. The proof is most easily visualized by the topological deformation of the

polyhedron onto the plane shown below.

S Fig. 4.4

This segment partition can be built in O(n 2) time by considering the intersection of

edges and ridges, which can be made available from the preprocessing and triangulation

., phase of the algorithm.

The importance of these observations will become apparent soon. Our approach is

to develop a method of sweeping the surface of the polyhedron while maintaining the

shortest path information incrementally. The key quality of the sweep is that it

proceeds in monotonically increasing distances from the source. The sweep is

represented as a total order'on the edges of the polyhedron. To establish monotonicity,

we order the edges by the relation, e, < e 2 if a shortest path traverses el before travers-

ing e 2. In general, however, this relation cannot be embedded in a total order.

There are two difficulties in determining a total order. First, if given two edges el

and e 2, both edges are traversed from both sides, then we may have el < e2 and e2 < e,
(see Fig. 4.5a). We overcome this difficulty by replacing each edge by two oppositely

directed edges. We make the convention from this point on that a path from the source

traverses a directed edge only if it crosses the edge from the left side of the edge to the

right.

The second difficulty arises when edges overlap spirally with respect to shortest

paths so that e 1 < e2 < • < e, < e, (see Fig. 4.5b).

4-

.~e

e3'

Fig. 4.5

The difficulty arises from the spherical nature of the polyhedron. The spiral can be bro-

ken by cutting the polyhedron along a path that simultaneously splits all spirals. Edges

that cross this path are split into two edges. Rather than explicitly defining the path,

we define its intersection with the edges. For each edge, consider the point x such that

Ang(x) is minimal. If this point is not a vertex, then place a new vertex at this point,

and retriangulate the face. This means that if x and y are two points on a directed edge

such that x is closer to the head of the edge than y and both x and y are traversed by a

shortest path from the left side then Ang(x) > Ang(y). We may introduce vertices

through which shortest paths travel by this operation and we will treat these as special

cases.

The point at which to add this new vertex can be found as follows. Map each lay-

out segment of the edge onto the plane by the planar layout transformation. If trny seg-
ment crosses the positive x axis, then place the new vertex at the point of intersection.

Otherwise. select the segment endpoint mapped to the polar coordinates (0, d) for which

0 is minimum. Invert the planar layout map to determine the location of the new ver-

tex. This can be done in time proportional to the number of layout segments, which is

O(n').

Lemma 4.3 After splitting the edges as described above, the relation e, < e2 can be

embedded in a total order.

Proof

IWe say that a curve on the polar plane is monotone if, as the curve is traced by a

point x - (8.r) moving from one end of the curve to the other, the value of 0 changes

monotonically clockwise or counterclockwise. Given two monotone curves. c, and c., we

say that c, < c2 if there is a ray at some angle 0 intersecting the curves at the coordi-

nates (0. r,) and (0, r) respectively, and r, < r.. We say that two monotone curves do

not cross each other if c, < c. and c 2 < C1 are not both true. Note that noncrossing

curves may intersect.

I

20

A sufficient condition for embedding the < relation on noncrossing, monotone

curves in a total order is that no curve cross the ray 0 = 0. By Lemma 4.2 the planar

layout maps each directed edge to a possibly discontinuous monotone polar curve. It

suffices to extend the planar layout of each directed edge to a continuous curve on the

polar plane such that

:, , (1) each curve is monotone,

(2) curves do not cross, and

(3) no curve crosses the ray 0 = 0.

Consider each segment of an edge e to be directed in the same way that the edge is

directed. Since we considering directed edges, shortest paths traverse the edge from only

the left side. Let the layout segments be 1, 12, ... ,k, listed from the tail of e to its

head. The endpoint of each segment is a ridge point and so is mapped by the planar

layout to the boundary of the star shaped polygon. We connect the head of 1, to the tail

of I,+, for 1 < i < k along the polygon in a counterclockwise direction. Lemma 4.2 and

the fact that the polygon is star-shaped guarantees that the resulting curve is monotonic

and couterclockwise directed.

To see that the resulting curve does not cross the ray 0 = 0 first note that no lay-

out segment crosses this ray for otherwise there is a point x on the segment for which

Ang(x) = 0 implying that a vertex has been added here. The connection between two

layout segments I and I,+, cannot cross this ray, for otherwise we would have a point x

on I,-, that is closer to the head of the edge than a point y on 11 and Ang(x) < Ang(y),

which cannot occur.

Finally, to see that the resulting curves do not cross suppose to the contrary that a

shortest path P1 traverses the (directed) edge e, before e2 and another shortest path P 2

traverses e2 before e,. It is important to note that the traversals occur from the same

side of each edge (See Fig. 4.6). S5

'-1' "-'..

I-- ----.

Fig. 4.6

Consider the closed region on the polyhedron bounded by e. and the shortest paths.

Consider the point x at which Pi traverses e,. At this point e, crosses the boundary or

21

this region. The point y at which P 2 traverses el is entirely outside of the region. Let x-

and Y be the points at which P, and P 2 traverse e 2 respectively. There are three possi-

bilities:

(1) If Ang(x) = Ang(y) then one of the paths P1 or P 2 is a subpath of the other. The

longer of the two paths contains the points x, y, k and Y ordered in distance from

the source so that x < £ and 9 < y. This in turn means that the segments xy and

it overlap implying that the edges themselves overlap, which cannot occur.

(2) If Ang(x) < Ang(y) then x lies closer to the tail of e 1 than y and hence e1 must

eventually leave the region either by crossing e 2 or by recrossing one of the shortest

paths which is impossible.

(3) Suppose that Ang(x) > Ang(y). By definition of the region, R is closer to the tail of

e 2 than Y, but Ang(x) = Ang(x) > Ang(y) = Ang(y) which cannot be.

The < relation on edges can be determined in o(n 2 log n) time by a cyclic counter-

part to standard line sweep algorithms (see [PrS1J, for example). The resulting total

order gives us the desired sweep procedure for the polyhedron.

Next we consider the shortest path information that is maintained for each edge.

Recall that each face of the polyhedron is a triangle that is partitioned by O(n) ridges

that do not intersect in the interior of the face. Also recall that the ridges are the Voro-

noi diagram of a set of source image points.

For a given face, consider these source image points. Note that except for the face

containing the source, for which shortest path queries can be trivially answered, the

shortest paths must traverse an edge of the face. It suffices to restrict attention to the

shortest paths traversing each edge. For each directed edge e, we define a structure con-

raining the source images. Src(e), of the shortest paths that pass through e from the left.

From Section 2 we know that the planar unfolding of the shortest path to a point x on e

is the straight line segment joining x to the nearest point in Src(e). Therefore, in the

Voronoi diagram of Src(e) each Voronoi polygon intersects e. By convexity of Voronoi

polygons, each intersection is a single interval along e. The points of Src(e) are ordered

according to the intersection of their Voronoi polygons with e. Note that the Voronoi

diagram defined by Src(e) is not necessarily the same as the set of ridges, since the

former only includes paths that traverse e from the left side. We give details later on

the implementation of this structure, but it suffices for now to assume that we can per-

form bisection on the set Src(e).

0.

22

Given such a structure we answer a query as follows. A query point is represented

by the face (of the original polyhedron) n which it lies and the coordinates of the point

relative to the face. By standard point location techniques, we can determine which of

the triangular subfaces contain this point in O(log n) time [Ki83, LT77, Co83, Pr81].

Let x be a query point lying on a triangular face f (that does not contain the source)

whose clockwise directed edges are e,, e 2 and e3 . The shortest path to x must traverse

one of these three edges. To determine the shortest path to x is suffices to determine the

closest point to x in Src(el), Src(e2) and Src(e3) separately and then select the closest of

the three. To determine the closest point to x in Src(e) we need the following lemma.

Lemma 4.4 Consider a face f, and a clockwise directed edge e1 on that face and the

Voronoi diagram of Src(e,). The Voronoi diagram restricted to the interior of f contains

no Voronoi vertices.

Proof

Let e 2 and e 3 be the other clockwise directed edges, and let

S = Src(el) U Src(e 2) U Src(e 3). By construction we know that the Voronoi diagiram of

S restricted to the interior of f does not contain any Voronoi vertices. This implies that

the Voronoi polygons of S intersect at least two edges of f. Thus, the Voronoi polygons

of Src(e,) intersect at least two edges of f since they are supersets of their counterparts

in S. Suppose that the Voronoi diagram of Src(e,) contains a vertex on the interior of f.

There are at least three points, pI, P 2 and P3, of Src(e,) equidistant from this vertex.

Assume that these points are ordered from left to right by the intersection of their Voro-

noi polygons with el (See Fig. 4.7). 'P3

* I

Fig. 4.7

The bisectors between p, and P2 and between P2 and P3 intersect the edge el because theI-

Voronoi polygons of the three points intersect el. But the Voronoi polygon for P2 res-

tricted to f is contained in the triangle bounded by these bisectors and e,. By convexity

this triangle does not intersect any edge other than e, a contradiction.

4,%

23

The closest point to x in Src(e) can be found by bisection as follows. Select the

" midpoint p, of Src(e) and the point p1+1 to its right. By the ordering of points in Src(e),

the bisector between these two points is part of the Voronoi diagram. Because there are

no Voronoi vertices on the face, this bisector separates the face into two regions, those

points closer to p 1 ... p p, and those closer to the remaining points in Src(e). After

O(log n) probes the closest point to x is found. Once the region containing the point is

found it is an easy matter to determine the shortest path.

We turn our attention to the data structure that we will use to store the points of

Src(e). The points of Src(e) cannot be listed explicitly, since doing so would require

O(n 2) storage. Instead we store the points in a set of trees, one tree associated with each

directed edge. We take advantage of similarities in local path structure by sharing sub-

trees.

Let p E Src(e) where p arises as the planar unfolding of the source s. through the

directed edges el, e2 , . ek. Let P, denote the planar unfolding transformation of the

edge el (mapping a point on the face to the left of el to the coordinate system for the

face on the right of el). Clearly, p = PkPk-1 . . . Piso. We can recover p by knowing the

matrix product Pk " " .P1.

Since the points of Src(e) are ordered, we may store these points as the leaves of a

-..: balanced search tree. For concreteness we will use a 2-3 tree fAH741. This search tree is

*not to be confused with the tree formed by the ridges on the surface of the polyhedron.

Each vertex of this search tree is labeled with a transformation. Suppose that p E Src(e)

is stored in a leaf of this tree, and the transformations along the path from the root to

this leaf are Qj, Qj-1 ... , Q1 . We maintain the condition that the product QjQ- ' Q,

PkPk_ ".' P 1 . Since the tree is balanced, the length of the Q-products is O(log n)

even though the number of unfolded edges is O(n).

The search tree associated with the edges are built as follows. The edges are pro-

cessed according to the total order introduced earlier. First, consider the three edges

- that are oriented counterclockwise around the face containing the source. Every shortest,

path traverses one of these edges before any other edge, hence we may assume that these

edges are first in the order. Clearly, Src(e) for each of these edges contains only one

point, hence the associated tree consists of a single leaf labeled with the transformation

unfolding the edge.

In processing the remaining edges, we construct a new tree by modifying the trees

of previously processed edges. (Later we show how to recover the information from the

modified trees.) Let e be a directed edge to be processed. Let f be the face to the left of

, % %I

24

e, implying e is oriented counterclockwise about r. Let e, and e2 be the other edges of f,

listed in clockwise order and directed clockwise. Let ', and T, denote the directed com-

plements of these edges. Where i is 1 or 2, let j be the value 2 or 1 respectively. Clearly

any shortest path traversing e must first traverse either el or e 2, meaning that one or

both of these edges has already been processed.

For i = 1, 2, if e, has already been processed, let T, be the search tree for el. We

begin by identifying those points in Src(e) whose slice does not extend to the surround-

ing faces. We emphasize that the slice referred to here is the shorest path slice and not

the Voronoi polygon of Src(e). The slice is a Voronoi polygon of the union of Src for all

three edges. As mentioned in Lemma 4.4, each slice intersects at least one edge of f

other than el. If the intersection of a slice with e consists of a ridge point or ridge seg-

ment then no shortest path from the corresponding source point traverses e (see Fig.

4.8).

t\
,'. '

e

Fig. 4.8 Terminating a Path

Observe that such a slice has a Voronoi vertex on the edge e. The set of such

source points can be determined in time proportional to the number of Voronoi vertices

on e. Over the entire polyhedron, there are O(n) Voronoi vertices, hence the set of these

source points can be determined in O(n) time. We delete each such point from the tree

T 1. The deletion of a single point can be performed in O(log n) time. Since each dele-

tion occurs at a Voronoi vertex, the number of deletions is bounded by the number of

faces, and hence the number of edges incident on the vertex. From Lemma 2.1 these are

edges incident on vertices of degree 3 or more in a tree containing n leaves. There are

O(n) such edges, so this operation requires O(n log n) time over the entire polyhedron.

Of the remaining points of Src(e,), some subset represents shortest paths traversing

e (the others traverse Tj). This set consists or those source images whose slices intersect

e. Since these slices do not overlap, and since the points of Src(e) are ordered with

respect to the intersection of these convex polygons with e,. the order of intersection

with e is identical. In other words, once the leaves of T, that contain these source points

have been identified, no reordering within the set is necessary. The slices of the points

of Src(el) can be partitioned into three sets, those intersecting only e, those intersecting

25

0:".y -, and those intersecting both e and Fj. By convexity, at most one slice intersects

both edges. Let p be the source point corresponding to this slice. Because of the order-

ing of source points, those slices intersecting e lie to one side of the slice for p and those

slices intersecting 'j lie to the other side. Therefore, the tree of source points from

-. Src(e) corresponding to shortest paths traversing e can be found by splitting the tree T,

about the point p so that p is the leftmost leaf of one tree and the rightmost point in

the other. Let the tree containing the points for e be called Te,. The remaining tree can

be saved until F, is processed. This construction is shown schematically in Fig. 4.9.

\ .'

\ \ ,

.e

Fig. 4.9 Splitting Trees

The point p can be determined by bisection in O(log n) time. This tree manipulation

can be performed in O(log n) time on a 2-3 tree.

If only one of Te.. and Te,2 is nonempty then let Te be this tree. Otherwise, Te is

the concatenation of these trees where Te,i is on the left and Te 2 is on the right. As

before, there may be at most one point p whose slice intersects both el and e 2. This

point that appears in both trees is stored only once in the concatenation. This operation

is illustrated in Fig. 4.10.

Fig. 4.10 Concatenating Trees

Again, the fact that slices do not overlap guarantees that the points are properly ordered

in the resulting tree. This operation can be performed in O(log n) time on 2-3 trees.

The tree T, is completed by premultiplying the root of the tree by the transformation

unfolding the edge e.

. .*

26

The correctness of this construction is immediate from the observations we have

made. The complexity for deletions was shown to be O(n log n) overall. The complexity

of splitting and concatenation is clearly O(log n) for each of O(n) edges, hence O(n log n)

overall.

We must still describe how to maintain the multipliers on the tree's vertices during

these operations. The key invariant is that the product from the root to each leaf

remains the same. The fundamental operations performed on the 2-3 tree are:

(1) Split a 4-node into two 2-nodes by duplicating the transformation for each new

subtree (see Fig. 4.11a).

(2) Merge a 1-node into a 2-node preserving the multiplier for the 2-node but premulti-

plying the inverse of this transformation on the 1-node (see Fig. 4.11b).

TaC

CLI
Fig. 4.11

Thus the product from the root to the newly merged subtree is

Q3Q3 'QIQ2 = Q1Q2 as it was originally. Note that operations (1) and (2) can be

performed in 0(1) time and generally may be applied O(log n) times during each 2-

, 3 operation.

(3) Concatenate two subtrees of different heights by performing a premultiplication by

the inverse similar to case (2). In this case the product from the root to the point

of insertion is inverted (see Fig. 4.12).

Fig. 4.12

This operation requires O(log n) time, but is performed only once when concatenat-

ing trees.

*~ -- -

27

The procedure described here constructs the tree for an edge by modifying (and

hence destroying) previously built trees. In order to save the information from the previ-

ously processed edges, we employ a simple trick. Rather than modifying a node of the

tree, we duplicate the node and perform the operation on the duplicate. Since

O(n log n) time suffices to build the trees, O(n log n) nodes may be created in the pro-

cess. Each tree by itself contains O(n) edges. Each directed edge of the polyhedron is

linked to the root of the corresponding search tree.

The bisection outlined earlier used to process queries is implemented by the stan-

dard descent on search trees. Since we wish to quickly determine the equation of the

bisector between a pair of points, we include an additional piece of information. For

each pair of sibling subtrees in the structure, we determine the equation of the bisector

between the rightmost point of the left subtree and the leftmost point in the right sub-

tree. This bisector is stored at the common ancestor node. This information can be

determined in O(n log n) time by a traversal of the tree structure.

At this point we may dispense with the ridges and store only the triangulated
polyhedron and the balanced search tree structure.

Theorem 4.5 Given a convex polyhedron with n vertices and a source point on the
polyhedron, the shortest path from the source to a query point on the surface of the

polyhedron can be determined in 0(k+log n) time after O(n2 log n) preprocessing from a

structure requiring O(n log n) storage. Here, k is the number of faces traversed by the

shortest path.

-' 5. Further Remarks

The results of this paper suggest a number of other problems. Although this paper

treated the case of the source and query point lying on the surface of the polyhedron.

the results can easily be generalized to the case where the source lies external to the

polyhedron and the query point lies on the polyhedron. We observe that in this case,

the faces of the polyhedron can be partitioned into two classes: those faces for which the

source is visible and those faces for which the source is not visible. For the former set.

the shortest path is a straight line, and for the latter, the shortest path is determined by

reducing the problem to the convex hull of the source and the polyhedron. This convex

hull can be computed in linear time. However, the case in which the query point is exte-

rior to the polyhedron cannot be solved by these methods.

1 6 , ,& '-w
. . , .

28

The most interesting generalization would be to find an efficient algorithm for the

shortest path problem amidst general nonconvex polyhedral obstacles. Sharir and Schorr

[SS84] give a doubly exponential algorithm for this case, and suggest that the problem

may be NP-hard. But they consider the problem of finding an exact solution. Can

numerical techniques be applied yielding an approximate solution running in time that is

polynomial in n and the number of digits of precision? The shortest path problem

addressed in this paper is essentially a two-dimensional problem, whereas the general

case clearly is a three-dimensional problem.

O'Rourke, Suri and Booth have given an algorithm for finding the shortest path

between a pair of points on a nonconvex polyhedron subject to the restriction that the

path travel along the surface of the polyhedron in O(n) time [OS84]. It would be of

interest to find an algorithm solving the single source problem in this case, extending the

techniques of this paper. Another problem would be the solution of the all pairs prob-

lem on the convex polyhedron, that is, can the polyhedron be preprocessed so that given

an arbitrary pair of points on or above the surface of the polyhedron, can the shortest

path be determined in time O(logkn) for some k.

It is of some interest to determine whether the O(n log n) space can be improved to

0(n). Cole has shown how to search in similar lists using only 0(n) space [Co83] how-

ever it is not clear how to adapt this data structure to handle the additional complica-

tion of transformations.

References

[AH74] Aho, A. V., Hopcroft, J. E., Ullman, J. D. The Design and Analysis of Com-
puter Algorithms, Addison-Wesley, 1974.

Co83] Cole, R. "Searching and Storing Similar Lists," Courant Institute CS Tech
Rept. 88. Oct 1083

tDM801 Dobkin, D. P., Munro, J. I. "Efficient Uses of the Past," in Proc. 21st IEEE
Symp. on Foundations of Computer Science (1980), pp. 200-206".

[Ki83] Kirkpatrick, D. G. "Optimal Search in Planar Subdivisions." SIAM J Con-
put.. 12 (1983), 28-35.

"LP81 Lee. D. T., Preparata. F. P. "Euclidean Shortest Paths in the Presence of
Rectilinear Boundaries." Proc. 7th Conf. on Graphth. Concepts in Coinp.
Sci., Carl Hanser (1981, 1982), 303-316.

LT771 Lipton, R. J.. Tarjan, R. E. "Applications of a Planar Separator Theorem,"

- L

29

in Proc. 18th IEEE Symp. on Foundations of Computer Science (1977), pp.

162-170.

[LW791 Lozano-Perez, T., Wesley, M. A. "An Algorithm for Planning Collision-Free

Paths Among Polyhedral Obstacles," Commun. ACM, 22 (1979), 560-570.

"OS84] O'Rourke, J., Suri, S. and Booth, H. "Shortest Paths on Polyhedral Sur-

faces," Manuscript, Johns Hopkins University, 1984.

[Pr8l] Preparata, F. P. "A New Approach to Planar Point Location," SIAM J.

Comput., 10 (1981), 473-482.

[PM831 Preparata, F. P., Muller, D. E. "Finding the Intersection of n Half-Spaces in

Time O(n log n)," Theoret. Comp. Sci., 8 (1979), 45-55.

[SH75] Shamos, M. I., Hoey, D. "Closest-Point Problems," in Proc. 16th IEEE
Symp. on Foundations of Computer Science (1975), pp. 151-162.

!SS841 Sharir, M., Schorr, A. "On Shortest Paths in Polyhedral Spaces," in Proc.

16-th ACM Symp. on Theory of Computing (1984), pp. 144-153. also Tel Aviv

Univ. Computer Science Tech. Rept. 84-001, March 1984

'p.

9

UNCTAS-;.TTFT
<-SE CURITY~ CLASSIFICATION OF TIS PAGE ADA (L'&dybt

REPORT DOCUMENTATION PAGE
ie REPORT SECURITY CLASSIFICATION lbi RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
-*. 0 SICo~RlTv CLASSIFICATION AUTHORITY 3. DiSTRIBUTIONiAVAILABILITY OF REPORT

N/A Approved for public release;
2b DECLASSIFICATION/DOWNGRIAOING SCI.ISDULE distribution unlimited

N/A _ _ _ _ _ _ _ _ _ _ _ _ _ _

6I PERFORMING ORGANIZATION REPORT NUMBERISI 5. MONITORING ORGANIZATION REPORT NUMBERIS)

CAR-TR- 120
OCANZAIOTbROFCES1BO495NM AMFSR-TR. 86O - 046

6& NA#AE OF.PERFORMING ORAIAIN b FIC YBL7.NM OF MONITORING ORGANIZATION

* University of Maryland (ifaplicble) Air Force Office of Scientific Res.

'4 ZIP Code) 7b. ADDRESS (City Siatip and 71P C0de)

Center for Automation Research Bolling Air Force Base
College Park, MD 20742 Washington, DC 20332

0, 3~'(OF FUNDING SPONSORING)Bb OFFICE SYMBOL g PROCUREMENT NSTRkMENT iDIV-ITF!CATON NUMBER

iN:ZTION - (f epI~c~J~' F-49620-83-C-0082

Bc ADDRESS iCity. State ad ZIP Code) 10 SOURCE OF FUNDING NOS

PROGRAM PROJECT TASK WORK UNIT

ELMN NO. NO No N
S 11 TITLE (include Secuity Cl8awificgOlnh ON FINDING

S 12 PFOSOINAL AUT.IORISI

',1 l 13b rIME COVERED IA DATE OF REPORT iY.. Mo0 . 94), 13 PAGE r-IN
Technical FRM_ TO____My 98 30

COSATI CODES 18 SU BJE CT TE RMS (Contlinut on PWue~se it neceuary and IdentlIfy by block nu~m ber

FIELD GROUP S UB1 G R.

"IABST RACT (Contiu 1an. revrs Iif~ IfteNimaryI and idem tify by block murnbqrj

Applications in robotics and autonomous navigation have motivated the
study of motion planning and obstacle avoidance algorithms. The special

Scase considered here is that of moving a point (the object) along the surfacE
.<of a convex polyhedron (the obstacle) with n vertices. Sharir and Schorr

have developed an algorithm that, given a source point on the surface of a
convex polyhedron, determines the shortest path from the source to any point
o\ n the polyhedron in linear time after O(n3 log n) preprocessing time. The
preprocessed output requires 0(n2) space.

By using known algorithms for fast planar point location, the shortest
path query time for Sharir and Schorr's algorithm is shown to be O(k + log n,
where k is the number faces traversed by the path. We give an impr-nved pre-
processing algorithm that runs in O(n2 log n) time requiring the same query
time and space. We also show how to store the output of the preprocessing
lgnr-ith-n in C'(n Ing n) _qpacp whilp ITIAnt-Ainina the same auerv time.

20 DISTRISUTION.AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

VNCLASSIFIED/UNLIMITED & SAME AS RIPT OT DTC USERPS C3 UNCLASSIFIED

22. *. %VT. OF IRESPONSIBI,5INDIVIDUAL 7 22b TELEPI4ONE NUMBER of2 OF -r S Y MBOL
. ,, .- , ((include 4, m Code,12

OD0 FORM 1473, 83 APR EDITION OF I JAN 73 ISOBSOLETE UNCLSSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

.4.

4q

S'r
.r *** * . . N , - S* S "SiS ~ -' S ~ . s***'' 5-

